Все ML-инженеры знают о линейной регрессии. Это та самая база, с которой начинает изучение алгоритмов любой новичок. Но вот парадокс: даже многие «прожженные» инженеры не всегда до конца понимают ее истинную работу под капотом.
А именно — какая у «линейки» статистическая связь с Методом Максимального Правдоподобия (MLE) и почему она так сильно «любит» MSE и нормальное распределение. В этой статье мы как раз в этом и разберемся.