Оффлайн А/Б тесты в ресторанах фастфуда. Часть 2: Анализ и интерпретация результатов A/B-тестов

В первой части «Планирование и верификация оффлайн A/B-тестов» мы разобрали, как подготовить данные и убедиться, что группы для эксперимента сопоставимы. Мы провели тщательную верификацию: сравнили метрики, проверили распределения и постарались исключить искажения ещё до старта.

Теперь — самое важное.
Во второй части речь пойдёт о том, как анализировать полученные данные и не ошибиться с выводами. Мы обсудим методы, позволяющие скорректировать влияние внешних факторов, научимся контролировать ошибки первого и второго рода, выбирать подходящий статистический критерий и оценивать надёжность результатов.

Если первая часть была про чистоту эксперимента, то вторая — про силу аргументов.

Читать далее
4