Цель данной статьи - предоставить полное техническое руководство по созданию торгового агента, обученного с помощью Reinforcement Learning, на основе архитектуры Dueling Double Deep Q-Network с использованием Prioritized Experience Replay.
Агент разработан для ведения краткосрочной торговли на Binance Futures. Он принимает решения на основе минутных рыночных данных, включая: open
, high
, low
, close
, volume
, volume_weighted_average
, num_trades
.
Основная цель агента — максимизировать итоговую прибыль PnL с учётом комиссий и проскальзываний, в данном проекте ключевым этапом оценки стратегии агента выступает реалистичный бэктест, моделирующий поведение в условиях, максимально приближенных к реальной торговле.
Читать далее