Продолжаем серию статей про геометрические алгебры.
В этой части мы рассмотрим алгебры Грассмана или внешние алгебры с несколькими «корнями из нуля», то есть ненулевыми элементами, обращающимися в ноль при возведении в квадрат. Однородные элементы внешней алгебры — мультивекторы или -векторы, имеют геометрическую интерпретацию, которая позволяет рассматривать их как модели линейных пространств. Так строится афинная геометрическая алгебра с операциями пересечения и соединения. Мы рассмотрим двойственные алгебры и порассуждаем над ориентацией и мерой подпространств, соответствующих мультивекторам. Изучим свойства внешнего произведения и его геометрическую интерпретацию, коснёмся принципа двойственности и введём новые операции: два дополнения и регрессивное произведение.